报告人:王晓峰(广州大学)
时间:2023年11月16日 14:30 -
腾讯会议ID:338 794 120
报告摘要:In this paper, two classes of multiparameter Forelli-Rudin type operators defined on the product of unit balls in $C^n$ are introduced, which are natural extensions of the well-known Forelli-Rudin type operators originated by Forelli and Rudin in 1974, and further studied by Kures-Zhu in 2006, Zhao in 2015, and Zhao-Zhou in 2022. By establishing some new Schur's tests, in this paper, we completely characterize the boundedness of these two classes operators from one mixed-norm Lebesgue space $L^{\overrightarrow{p}}$ to another space $L^{\overrightarrow{q}}$, when $1\leq \overrightarrow{p}\leq \overrightarrow{q}<\infty$, equipped with possibly different weights. With these characterizations, we are able to obtain the necessary and sufficient conditions for both $L^{\overrightarrow{p}}\to L^{\overrightarrow{q}}$ boundedness of the weighted multiparameter Berezin transform and $L^{\overrightarrow{p}}\to L^{\overrightarrow{q}}$ boundedness of the weighted multiparameter Bergman projection, where $A^{\overrightarrow{q}}$ denotes the mixed-norm Bergman space.
报告人简介:王晓峰,1974年出生,教授,博士生导师,长期从事基础数学研究工作,主要研究方向为算子理论与算子代数。曾到美国进行一年的学术访问,近年来在国内外有重要影响的学术刊物,如《Journal of Geometric Analysis》、《Journal of Operator Theory》、《Integral Equations and Operator Theory》、《Science China Mathematics》等上发表论文50余篇。先后主持国家自然科学基金3项,曾获得霍英东青年教师奖、广州市优秀教师等荣誉。
邀请人:秦越石、王奕、王子鹏、晏福刚、赵显锋