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I N T R O D U C T I O N

NASAwishes to retrieve and repair a damaged
satellite which is in danger of re-entering
the Earth’s atmosphere. NASA has called
upon you to assist in various aspects of

this upcoming shuttle mission. Not only will you be required to assist in
the initial launch, but you will also be required to operate the robotic
arm (Canadarm) in the retrieval process. 

The Shuttle Problem 1
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P A R T  1 :  E S C A P E  S P E E D

Oneof the first considerations for launching the shuttle is
escape speed. This is the minimum initial speed at
which a projectile must be launched in order to escape
the Earth’s gravitational field. For the shuttle, this is an

upper bound for its launch speed as we do not want the shuttle to leave
Earth’s gravitational field. Since it is rather complicated to incorporate the
changing rates of propulsion and thrust, in this initial analysis we treat
the shuttle as a projectile — an object that is initially thrown, then has
no inflight propulsion. 

Newton’s universal law of gravitation applied to this situation is given by

Here, F represents the gravitational force exerted on the 

shuttle by the Earth, is a gravitational constant,

is the mass of the Earth, ms, is the mass of 

the shuttle (the shuttle weighs 220,000 pounds), and r is the distance
from the shuttle to the center of the Earth. Additionally, the radius of the
Earth is approximately meters. 

A. Starting with Newton’s Second Law of Motion, derive the shuttle’s escape
speed. (Hint: If the shuttle launches exactly at its escape speed, then in
theory, when the velocity of the shuttle slows downs to zero, it has
achieved infinite distance from the Earth. (You will also need to use the
chain rule in order to determine that the derivative of the velocity, v, 

at any time t is given by 

B. Comment on the feasibility of launching the shuttle at this speed; i.e.,
explain why it is or is not feasible, and what can be done if it is not 
feasible. 

C. Now consider a more realistic scenario in which booster rockets are
attached to the shuttle. If the booster rockets cease burning when the
shuttle is 6000 miles above the Earth and the shuttle’s speed at that time
is 15,000 miles per hour, determine if the shuttle will escape the Earth’s
gravitational field. 

D. Qualitatively, how does the mass of the shuttle affect the escape speed
and the ability to get the shuttle into orbit?  What are the implications of
the shuttle burning fuel during flight? 

dv

dt
= dv

dr

dr

dt
= dv

dr
v.

6.38 ×108

Me = 5.98 ×1024 kg

G = 6.67 ×10−11 N
m2

kg2

F = −G
Mems

r2 .
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P A R T  2 :  O R B I T  A N A L Y S I S

NASAwants to know the acceleration experienced
by the damaged satellite as it maintains a
circular orbit. The satellite’s position at any
point (x,y) in the plane of the orbit can be

modeled by the position vector However, since dis-
tances are measured relative to the center of the Earth and the orbit is 
circular, the use of polar coordinates simplifies computations. Thus, 
position will be measured in terms of angular and radial components. 

A. Convert the position vector to its corresponding polar form. Note that
the radius, r(t), and angle θ (t), are functions of time.

B. Determine the associated acceleration vector.

C. Compute the acceleration in each direction (angular and radial) and write
the acceleration vector as the sum of a radial and angular component. That
is, write the acceleration vector you just computed in the form

where the unit radial vector is given by  

and the unit tangential (angular) vector is given by 

Hint: use the geometrical relationship between the two vectors

D. Determine the acceleration vector for a satellite moving in a circular orbit
200 miles above the Earth with a constant angular speed of 4.1440 radi-
ans per hour. Interpret your results.

ur

→
 and uθ

→
.

uθ

→
= −sinθî + cosθĵ.

ur

→
= cosθî + sinθĵ ,a

→
= ar ur

→
+ aθ uθ

→
,

R t( ) = x t( )î + y t( ) ĵ.
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P A R T 3 :  S A T E L L I T E  R E T R I E VA L

Dueto atmospheric drag, the satellite is losing altitude so quick-
ly that it will burn up in the upper atmosphere unless it
can be immediately placed into a higher orbit. NASA origi-
nally intended to place the satellite inside the shuttle bay

and move it to a higher orbit. However, due to an onboard malfunction,
most of the shuttle’s breathable air has been lost. There is not enough time
to retrieve the satellite, repair it, and then move it. NASA feels it is far too
dangerous to have astronauts outside working on the satellite while the
shuttle is maneuvering, so they plan to grab the satellite with the arm and
move to a higher orbit while the satellite is being brought inside the bay.
The manuever to a higher orbit requires a constant firing of the shuttle’s
thrusters, which gives the shuttle a constant acceleration of 
0.3 m/sec2, directed away from the Earth.

You are required to operate the robotic arm to retrieve the hapless satel-
lite. From NASA’s design specifications, the hinge that connects the
robotic arm to the shuttle can only support a torque of 800Nm. The arm
itself consists of a long and a short portion, connected by a joint. There
is a grappling hook at the end of the short portion that can be used to
snag objects, such as the satellite, from orbit (ignore its length for this
analysis). The long portion of the arm has length 9 m and mass 120 kg,
and the short portion of the arm has length 7 m and mass 90 kg. The
satellite weighs 500 pounds on Earth. 

The satellite can be brought into the cargo bay when the two portions of
the arm are vertical. It is your job to retrieve the satellite without allow-
ing mechanical failure of the joint, i.e., without surpassing the torque
restriction stated above. In a recent attempted docking maneuver, the
MIR space station was damaged when a supply ship collided with it. In
order to avoid a similar fiasco, NASA wants the shuttle to be as far away
from the satellite as possible when it is retrieved. 

There are two degrees of freedom to consider; the angle between the arm
and the shuttle bay and the angle between the two portions of the arm.
To simplify matters, model the angles of the arm as shown in the dia-
gram below. Assume initially that the arm is geared in such a way that
angles a1 and a2 are the same at all times. Since the material in the arm is
uniform (same type of material, density, etc.) it is also reasonable to
assume that the force exerted along the length of each portion of the arm
is concentrated at the center of the respective portion. 

Interdisciplinary Lively Applications Project4
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A. What is the maximum distance the satellite can be from the shuttle yet
still be retrieved? 

B. Assuming that the shuttle can be moved to this distance, plot the return
path of the satellite from the retrieval point to the cargo bay. Be sure to
describe your reference system and any additional assumptions you
make.

C. To make matters more realistic, now assume that the angles a1 and a2 are
independent of each other. Derive an equation which expresses the mag-
nitude of the torque as a function of the angles a1 and a2. Then, using a
contour plot, graph the magnitude of the torque against the angles a1 and
a2. Describe any overall trends that you observe .

The Shuttle Problem 5
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S A M P L E  S O L U T I O N

Thefollowing is a possible solution to the project. The 
software package, Mathcad, was used to generate this
solution, and the Mathcad equations are distinguished by
use of a different font. Using a package like Mathcad per-

mits variation of key parameters between groups, permitting a range of
possible solutions.

DESCRIPTION OF VARIABLES:

m1:=120 Mass of long portion of the arm, kg

m2:=90 Mass of the short portion of the arm, kg 

w1:=500 Weight of satellite, lbs

m3:=w1 x 0.4535923

m3=226.796 Mass of the satellite, kg 

g1:=.3 Acceleration of shuttle away from Earth, m/s2

L1:=9 Length of long portion of arm, m

L2:=7 Length of short portion of arm, m

t1:=800 Maximum sustainable torque on arm hinge, Nm

G:=6.67 x 10–11 Gravitational constant, Nm2/kg2

Me:=5.98 x 1024 Mass of the Earth, kg

Rearth:=6.38 x 106 Radius of the Earth, m

PART 1:

A. We start with a description of forces from the free body diagram of the
shuttle, and  assume that the positive direction is away from Earth. There
will only be one force, that of gravity. From Newton’s Second Law,

msa = –GMems/r
2.

Use the given chain rule substitution, a = dv/dt = (dv/dr)(dr/dt) 
= v (dv/dr), to get a differential equation we can solve:

msv(dv/dr) = –GMems/r
2.

Now divide by ms and separate variables to obtain

vdv = –GMedr/r2.

Interdisciplinary Lively Applications Project6
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We get , where C is determined from initial conditions. 

Note that when t = 0, v(0) = v0 and r(0) = Rearth, the radius of the Earth.
Thus,

C = v0–GMe/Rearth.

Solve for the variable r.

The terms G, Me, and Rearth are known constants, but we still need to
determine the value of v0. We note that the above equation relates the
variables r and v. We analyze the motion of an object leaving Earth to
determine this unknown constant. As an object moves away from the
Earth, its velocity decreases due to the Earth’s gravity. However, if it is to
completely escape Earth’s gravitational field, its velocity must never
decrease so much as to be negative. In other words, the minimum initial
velocity required (the escape velocity) will have the property that as v
goes to zero, r increases towards infinity. Hence, we require

 

Thus, as v approaches zero, r will have a finite value unless the denomi-
nator approaches zero, i.e.,

B. It simply is not feasible to launch the shuttle at a speed of 11,180 m/s at
the surface of the Earth. By way of comparison, the muzzle velocity of an
M-16 rifle is only 1000 m/s. The shuttle would have to go from rest to
the escape velocity nearly instantaneously. Any such acceleration would
certainly kill the astronauts and destroy the shuttle. Given the large mass
of the shuttle, and the very high speed required, this acceleration would
also require tremendous force — far more than is possible.

   v0 = 1.118 ⋅104  in m / s,  or 25, 014 miles per hour.

  
or,   v0:= 2 ⋅ G ⋅ Me

Rearth

  0 = 2 ⋅ G ⋅ Me − v02 ⋅ Rearth

v→0
limr =

v→0
lim 2GMe

Rearth

v2Rearth + 2GMe − v0
2Rearth







→ ∞.

r = 2 × G × Me × Rearth

v2 × Rearth + 2G × Me − v02 × Rearth( )

1
2

× v2 = G × Me

r
− G × Me

Rearth

+ 1
2

× v02

1
2

v2 = GMe

r + C

−G × Me

r2∫ dr → G × Me

r

vdv → 1
2

× v2∫
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C. The formula derived in part A for escape velocity is valid for any distance
from the center of the Earth by simply replacing Rearthwith rd in the
derivation, where rd is the distance from the center of the Earth.
Converting 6000 miles to meters and adding in the radius of the Earth,
we get rd = 16.034 x 106 m. Applying our formula for escape velocity at
this distance, we get v0 = 7053 m/s. We compare this to the given speed
of the shuttle vs = 15000 mi/hr = 6704 m/s, and conclude that the shut-
tle will not escape Earth’s gravity since vs< v0 .

D. The mass of the shuttle, or any object for that matter, does not affect the
escape speed, as the mass divides out in the derivation. However, the
more massive the object, the more force is required to accelerate the
object to orbital and escape velocities. The design and large mass of the
shuttle make it extremely difficult to even get into high orbits, let 
alone reach escape velocity. According to NASA, the shuttle typically
orbits between 100 and 330 miles above the Earth at velocities around
7800 m/s.

PART 2:

A. We want to convert the Cartesian equations into polar form. 
Convert them to vector notation so MathCad can do the work for us.

The position vector now has the polar form still using
the standard rectangular basis vectors.

B. MathCad can easily calculate the necessary derivative for the acceleration
vector

C. In order to determine radial and angular components of this system, one

can take scalar products with the radial vector, and the 

angular vector,

However, if we group terms by sines and cosines, the following results: 

.

The astute observation is that this is really

.

  

2 ⋅ d

dt
r(t)







⋅ d

dt
θ(t) + r(t) ⋅ d2

dt2
θ(t)

2 ⋅ d

dt
r(t)







⋅ d

dt
θ(t) + r(t) ⋅ d2

dt2
θ(t)



















⋅
−sin (θ(t))

cos(θ(t))







+

d2

dt2
r(t) − r(t) ⋅ d

dt
θ(t)







2

d2

dt2
r(t) − r(t) ⋅ d

dt
θ(t)







2





















⋅
cos(θ(t))

sin (θ(t))







  

−2 ⋅ d

dt
r(t)







⋅ d

dt
θ(t) − r(t) ⋅ d2

dt2
θ(t)









 ⋅ sin (θ(t)) + d2

dt2
r(t) − r(t) ⋅ d

dt
θ(t)







2











⋅ cos(θ(t))

2 ⋅ d

dt
r(t)







⋅ d

dt
θ(t) + r(t) ⋅ d2

dt2
θ(t)









 ⋅ cos(θ(t)) + d2

dt2
r(t) − r(t) ⋅ d

dt
θ(t)







2











⋅ sin (θ(t))























   
ûθ =

−sin(θ(t))

cos(θ(t))






.
   
ûr =

cos(θ(t))

sin(θ(t))






,

  

r(t) ⋅ cos(θ(t))

r(t) ⋅ sin (θ(t))






,

  

d2

dt2 r(t) ⋅ cos(θ(t))

d2

dt2 r(t) ⋅ sin(θ(t))

















→

d2

dt2 r(t)






⋅ cos(θ(t)) − 2 ⋅ d
dt

r(t)



 ⋅ sin(θ(t)) ⋅ d

dt
θ(t) − r(t) ⋅ cos(θ(t)) ⋅ d

dt
θ(t)





2

− r(t) ⋅ sin(θ(t)) ⋅ d2

dt2 θ(t)

d2

dt2 r(t)






⋅ sin(θ(t)) + 2 ⋅ d
dt

r(t)



 ⋅ cos(θ(t)) ⋅ d

dt
θ(t) − r(t) ⋅ sin(θ(t)) ⋅ d

dt
θ(t)





2

+ r(t) ⋅ cos(θ(t)) ⋅ d2

dt2 θ(t)


















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This can be rewritten as 

which is the expression for the acceleration vector using polar basis vec-
tors, as required. This formula can be found in many standard Calculus
texts, (see, for example, Calculus, 2nd Edition by Finney and Thomas,
p.788 or Multivariable Calculus by Bradley and Smith, p. 706).

D. Since we are in a circular orbit with constant angular speed,

are constants. Therefore all equal zero. This

simplifies the equation for acceleration considerably: 

That is, all the acceleration is radial and constant. The negative sign indi-
cates that the acceleration is directed towards the Earth. This is known as
“centripetal acceleration”, and is one of the consequences of the law of
uniform circular motion. In this particular case, we are given that 

 ,

which yields Physically, the radial acceleration
makes sense, since the shuttle is in free fall and the only force acting on
the shuttle is gravity.

PART 3:

A. In order to find the maximum distance that the shuttle can be from the
satellite, we need to determine the magnitude of the torque on the hinge
of the arm as a function of the angle a1 . We can then set this magnitude
equal to the torque restriction and solve for the angle which provides the
maximum extension of the arm. It is then a simple calculation to deter-
mine the distance from the shuttle to the satellite.

   â(t) = −8.777ûr  in m / s2 .

  
r = Rearth + 200 mi.= 6.70 ⋅106 m and 

dθ
dt

= 4.1440 radians / hr = 0.001151radians / sec

   
â(t) = −r ⋅ d

dt
θ





2

ûr .

  

d

dt
r,  

d2

dt2
r,  and 

d2

dt2
θ

  
r and 

d

dt
θ

2 ⋅ d
dt

r ⋅ d
dt

θ + r ⋅ d2

dt2 θ






ûθ + d2

dt2 r − r ⋅ d
dt

θ





2







 ûr ,
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We use the free body diagram above to find an explicit description of the
moment arm vectors. Here we assume that the origin is at the middle of
the hinge on the shuttle. Using right triangles and trigonometry we can
determine the positions (p1–p3) where force is being applied. 

The following are the force vectors at each of the three points where the
forces are applied, i.e., the middle of each arm portion and at the end of
the arm where the satellite is attached. Note that the negative signs
denote the forces are directed towards Earth.

The corresponding torque equation is the magnitude of the cross prod-
ucts of the arm vectors and force vectors:

Initially we assume the angles a1 and a2 are equal. Thus, to find the value
of a1 which maximizes torque at the hinge, we need to find the root of
torque(a1,a1) - t1.

Initial guess    :

The maximum distance from the satellite, then, is the magnitude of p3
at this angle, or

B. We now graph the return path of the satellite. Recall that the origin is the
hinge on the shuttle. We start with the maximum angle, maxangle, and
decrease to zero. We use a parametric plot, with x(t) and y(t) represent-
ing the coordinates of the end of the arm. 

x(t):= (L1 + L2 ) ⋅ sin (t)

y(t):= (L1 + L2 ) ⋅ cos(t)

  p3(a1 , a1) = 8.244 m.

 maxangle:=  0.528 in radians,  or 30.25 degrees.

  maxangle :=  root(torque(a1,a1 ) − t1,a1 )

a1:= 0.4

   torque(a1a2 ): = p1(a1) ⋅ f1 + p2 (a1 , a2 ) ⋅ f 2 + p3 (a1 , a2 ) ⋅ f 3

   

f1 : =
0

−m1 ⋅ g1

0















   f 2 : =
0

−m2 ⋅ g1

0















   f 3 : =
0

−m3 ⋅ g1

0















  

p1(a1 ):=

L1

2
⋅ sin (a1 )

L2

2
⋅ cos(a1 )

0























  p2 (a1,a2 ):=

L1 ⋅ sin (a1 ) + L2

2
⋅ sin (a2 )

L1 ⋅ cos(a1 ) − L2

2
⋅ cos(a2 )

0























  p3(a1,a2 ):=
L1 ⋅ sin (a1 ) + L2 ⋅ sin (a2 )

L1 ⋅ cos(a1 ) − L2 ⋅ cos(a2 )

0















  t:=  maxangle ,  maxangle − 0.02..0
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Note that these parametric equations represent an arc of an ellipse,
shown as the curve in the above graph. The straight lines on the graph
represent the position of the arm (not to scale) at three points along the
path.

C. For the multivariable problem, we use a contour plot where the angles
run from 0 to π/2. The torque equation is the same as in part B, however
we no longer assume a1 = a2.

This contour plot shows how the angles a1 and a2 affect torque. Any pair
of angles to the left of the 800 Nm contour is feasible for retrieving the
satellite. The minimum torque occurs at the origin. Here both angles are
zero and the arm is directly above the shuttle parallel to the acceleration 

vector. The maximum torque occurs at . This corresponds to full 

extension of the arm from the shuttle perpendicular to the acceleration 
vector. All masses are now the maximum horizontal distance from the
hinge, maximizing the torque.

π
2

,
π
2







The Shuttle Problem 11

© COPYRIGHT 1998 COMAP     MAY BE PHOTOCOPIED FOR CLASSROOM USE



N O T E S  F O R  T H E  I N S T R U C T O R

Wedesigned this project to show students that seemingly dis-
parate ideas could be brought together to solve a larger
problem. One part relied heavily on differential equations
while the other two relied on vectors. This was sufficient for

students to appreciate how several aspects of mathematics could be used
together.

PART 1:

To help explain the concept of escape velocity to students, we used the
following example. If we shoot a bullet in the air, it will slow down, stop,
and then return to Earth. Shoot it faster, and it takes longer for the bullet
to stop. Escape velocity is the minimum initial speed required to guaran-
tee that the bullet will never return. Using the language of limits, “as the
velocity approaches zero the distance from the center of the Earth
approaches infinity.” Not exactly rigorous, but it does give the right idea.

Naturally, there are several alternatives to the sample solution. One could
also take in order to show that C=0.

Another alternative is to use definite integration and an improper inte-
gral, but the limits of integration need to be well explained. Also, if one
chooses to use the energy considerations commonly used in many
Physics courses, all that is required is to equate the decrease in kinetic
energy with the rise in potential energy. By solving the resulting equa-
tions the escape velocity falls out (no pun intended).

The students may question why escape speed is considered for the shut-
tle since the shuttle will always be under the influence of gravity (while
in orbit) during its missions. As stated in the project, the escape speed is
an upper bound for the speed at which the shuttle can be launched. Our
primary intent here was to introduce this concept and require students to
apply their mathematical skills to derive it from Newton’s Laws. Escape
speed was a topic to be discussed later in their Physics course, relying on
energy considerations for its derivation. However, by using Newton’s
Laws, the students had the additional benefit of being exposed to a prob-
lem involving a nonconstant acceleration which typically isn’t included in
most introductory physics courses.  

  r →∞
lim 1

2
v2 = GMe r + C( )
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PART 2:

Arbitrary angular velocities cannot be used in part 2. Orbital velocities
should be used so that students may check that the acceleration due to
gravity at the given altitude matches the acceleration on the shuttle that
they calculate. The centripetal acceleration of an object in uniform

circular motion is given by where r is the distance from the

center of the Earth, and v is the tangential speed. For an object in orbital
equilibrium, this acceleration should match the acceleration due to gravi-
ty from Newton’s Universal Law of Gravitation.

One can greatly simplify the derivation for the polar form of the 

acceleration vector by assuming that r and are constant in each step. 

There are a couple of reasons we recommend that students not use these
assumptions until they finish the general derivation. First, students can
always use the extra practice with the chain rule. More importantly, there
is rarely an orbit that has constant angular velocity or that is circular. 

Kepler’s laws imply that both r and change in the more usual 

elliptical orbit. It may help to point out that each term in the acceleration
vector has a physical interpretation: the radial, centripetal, tangential, and
coriolis accelerations.

PART 3:

The condition that the shuttle is firing its engines while retrieving the
satellite is necessary for a non-trivial torque problem. When the shuttle is
in orbit, it is usually in free fall; its engines are not firing and it is in equi-
librium. To an observer in the frame of reference of the shuttle, there
seem to be no external forces acting on anything in the shuttle. With no
forces, there can be no torque. It is for this reason that astronauts in orbit
seem to be weightless, even though they experience centripetal accelera-
tion due to gravity. To rectify this, assume the shuttle is firing its engines
in such a way that it is moving away from the Earth with a constant
acceleration, from a lower orbit to a higher one. This results in a “phan-
tom gravity” pulling objects towards the Earth, and generates the force
necessary for the torque analysis.

Vector products are not really necessary to find the torque since torque
has both a scalar and vector definition. Although we preferred the vector
approach for the sake of practice, students can find torque by using the
horizontal component of the position vector to each point of mass and
multiplying that distance by the force on that mass. It may be worthwhile
to have students determine why this approach is equivalent to the vector
method described in the sample solution. One could also use the Law of
Cosines to arrive at a solution, but care must be taken as machine errors
may develop in computing the solution.

 

dθ
dt

 

dθ
dt

a = v2

r
,
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